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Geometric algebra…

• Makes things intuitive
• Generalizes “weird” phenomena

‣ Cross product
‣ Quaternions for rotation
‣ A lot of physics

• Provides a more powerful framework than linear algebra
‣ You can add scalars and vectors (sort of)!
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Geometric Primitives
For now, consider 2D space. Let 𝑢⃗ = (1, 2)𝑇  and ⃗𝑣 = (3, 0)𝑇 :

⃗𝑣

𝑢⃗

Then, we define their wedge product, ⃗𝐴 ≔ 𝑢⃗ ∧ ⃗𝑣:

⃗𝐴 = 𝑢⃗ ∧ ⃗𝑣𝑢⃗

⃗𝑣

as the oriented 2D area formed by joining the two vectors. We call
⃗𝐴 a bivector. Note that ⃗𝐴 has an area and an orientation.
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Geometric Primitives

The wedge product is anti-commutative, i.e. 𝑢⃗ ∧ ⃗𝑣 = − ⃗𝑣 ∧ 𝑢⃗. This
can be visualized as the orientation of the two bivectors these wedge
products form:

⃗𝐴 = 𝑢⃗ ∧ ⃗𝑣 𝐵⃗ = ⃗𝑣 ∧ 𝑢⃗

In fact, the wedge product is uniquely determined by the magnitude
and orientation. The following two bivectors are equivalent:

In other words, shape does not matter.
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Geometric Primitives

More Intuition for Wedge Product
We can infer two more properties about the wedge product:
1. The wedge product is bilinear.
2. For parallel 𝑢⃗, ⃗𝑣, we have that 𝑢⃗ ∧ ⃗𝑣 = 0.

Hence, let 𝑒1, 𝑒2 be the standard basis vectors of ℝ2. We can express
the wedge product of 𝑢⃗, ⃗𝑣 ∈ ℝ2 in terms of these basis vectors:

𝑢⃗ ∧ ⃗𝑣 = (𝑢⃗1𝑒1 + 𝑢⃗2𝑒2) ∧ ( ⃗𝑣1𝑒1 + ⃗𝑣2𝑒2)
= 𝑢⃗1 ⃗𝑣2(𝑒1 ∧ 𝑒2) + 𝑢⃗2 ⃗𝑣1(𝑒2 ∧ 𝑒1)
= 𝑢⃗1 ⃗𝑣2(𝑒1 ∧ 𝑒2) − 𝑢⃗2 ⃗𝑣1(𝑒1 ∧ 𝑒2)
= (𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1)(𝑒1 ∧ 𝑒2)

Since 𝑒1 ∧ 𝑒2 forms the unit square, we can see that the area of
𝑢⃗ ∧ ⃗𝑣 equals 𝐵12 ≔ 𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1 = sin(𝜃)‖𝑢‖‖𝑣‖. Furthermore, 𝑢⃗ ∧ ⃗𝑣
form the unit square scaled by 𝐵12.
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Geometric Primitives

2D → 3D
For now, bivectors are analogous to planes. In 3D space, bivectors
have three components, instead of one. Let 𝑒1, 𝑒2, 𝑒3 be the stan-
dard basis of ℝ3.

Vectors and bivectors in 3D:

𝑒2

𝑒1

𝑒3

⃗𝑣 = 𝑣1𝑒1 + 𝑣2𝑒2 + 𝑣3𝑒3

𝐵⃗ = 𝐵12(𝑒1 ∧ 𝑒2) + 𝐵13(𝑒1 ∧ 𝑒3) + 𝐵23(𝑒2 ∧ 𝑒3)
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Geometric Primitives

For a 3D bivector, 𝐵⃗ = 𝐵12(𝑒1 ∧ 𝑒2) + 𝐵13(𝑒1 ∧ 𝑒3) + 𝐵23(𝑒2 ∧ 𝑒3),
the components 𝐵𝑖𝑗 are the projections of 𝐵⃗ onto the basis planes:

𝐵12 = 𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1

𝐵13 = 𝑢⃗1 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣1

𝐵23 = 𝑢⃗2 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣2

Wait, you look familiar…

𝑢⃗ ∧ ⃗𝑣 =  (𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1)(𝑒1 ∧ 𝑒2)
+(𝑢⃗1 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣1)(𝑒1 ∧ 𝑒3)
+(𝑢⃗2 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣2)(𝑒2 ∧ 𝑒3)

𝑢⃗ × ⃗𝑣 =  (𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1)𝑒3

−(𝑢⃗1 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣1)𝑒2

+(𝑢⃗2 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣2)𝑒1
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Now introducing…

The Geometric Product



The Geometric Product

The Geometric Product
At the heart of geometric algebra is the geometric product:

𝑢⃗ ⃗𝑣 = 𝑢⃗ ⋅ ⃗𝑣 + 𝑢⃗ ∧ ⃗𝑣

Similar to how an imaginary number has a real and imaginary part,
the geometric product is a multivector; it has a scalar and bivec-
tor part.

Let 𝑢⃗ be a vector, and let 𝑒𝑖, 𝑒𝑗 be distinct basis vectors:

𝑢⃗𝑢⃗ = 𝑢⃗ ⋅ 𝑢⃗ + 𝑢⃗ ∧ 𝑢⃗ = ‖𝑢⃗‖2

𝑒𝑖𝑒𝑗 = 𝑒𝑖 ⋅ 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗𝑒𝑖

Let 𝑢⃗, ⃗𝑣 ∈ ℝ3. Explicitly, their geometric product is:

𝑢⃗ ⃗𝑣 =  𝑢⃗1 ⃗𝑣1 + 𝑢⃗2 ⃗𝑣2 + 𝑢⃗3 ⃗𝑣3 + (𝑢⃗1 ⃗𝑣2 − 𝑢⃗2 ⃗𝑣1)(𝑒1 ∧ 𝑒2)
+(𝑢⃗1 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣1)(𝑒1 ∧ 𝑒3) + (𝑢⃗2 ⃗𝑣3 − 𝑢⃗3 ⃗𝑣2)(𝑒2 ∧ 𝑒3)
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The Geometric Product

Imaginary Numbers?
We return to ℝ2. Let 𝑒1, 𝑒2 be the basis vectors, and 𝑖 ≔ 𝑒1𝑒2.

Let ⃗𝑣 = 𝑎𝑒1 + 𝑏𝑒2. Then,

⃗𝑣𝑖 = 𝑎𝑒2 − 𝑏𝑒1, 𝑖 ⃗𝑣 = −𝑎𝑒2 + 𝑏𝑒1

⃗𝑣
⃗𝑣𝑖

𝑖 ⃗𝑣

Note that 𝑖2 = (𝑒1𝑒2)
2 = −𝑒2𝑒1𝑒1𝑒2 = −1, just like imaginary num-

bers!
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The Geometric Product

Imaginary Numbers?
In ℝ3, we have the orthonormal basis 𝑒1, 𝑒2, 𝑒3, and 𝑖 ≔ 𝑒1𝑒2𝑒3. This
value is a trivector, and it looks the unit cube (with orientation).

𝑒2

𝑒1

𝑒3

Here, 𝑖 commutes with any multivector ⃗𝐴. Note that 𝑒1𝑖 = 𝑒2𝑒3 and
𝑒1 = −𝑒2𝑒3𝑖.

Remarkably, 𝑢⃗ ∧ ⃗𝑣 = 𝑖(𝑢⃗ × ⃗𝑣).

11



The Geometric Product

Quaternions?
If 𝒑, 𝒒 are unit quaternions, then rotation of ⃗𝑣 by 𝒑𝒒 is 𝒑𝒒 ⃗𝑣(𝒑𝒒)−1.
This looks a lot like rotation using rotors, but rotors are easier to
understand.

Let 𝑥 = 𝑒1𝑒2, 𝑦 = 𝑒1𝑒3, 𝑧 = 𝑒2𝑒3:

𝑥 𝑦 𝑧

𝑥 −1 𝑧 −𝑦

𝑦 −𝑧 −1 𝑥

𝑧 𝑦 −𝑥 −1

𝑖 𝑗 𝑘

𝑖 −1 𝑘 −𝑗

𝑗 −𝑘 −1 𝑖

𝑘 𝑗 −𝑖 −1

(𝑒1𝑒2)
2 = (𝑒1𝑒3)

2 = (𝑒2𝑒3)
2 = (𝑒1𝑒2)(𝑒1𝑒3)(𝑒2𝑒3) = −1

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1
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The Geometric Product

Quaternions?
In computer graphics, the geometric product can be used to encode
3D rotations. Let ⃗𝑣, ⃗𝑎, ⃗𝑏 be linearly independent vectors. The reflec-
tion of ⃗𝑣 about ⃗𝑎 is given by:

𝑅𝑎⃗( ⃗𝑣) = ⃗𝑣 − 2( ⃗𝑣 ⋅ ⃗𝑎) ⃗𝑎

= ⃗𝑣 − 2(
1
2
( ⃗𝑣 ⃗𝑎 + ⃗𝑎 ⃗𝑣)) ⃗𝑎

= ⃗𝑣 − ⃗𝑣 ⃗𝑎2 − ⃗𝑎 ⃗𝑣 ⃗𝑎
= − ⃗𝑎 ⃗𝑣 ⃗𝑎

Likewise, reflecting about ⃗𝑎 then about ⃗𝑏 is given by:

𝑅𝑏⃗(𝑅𝑎⃗( ⃗𝑣)) = − ⃗𝑏(− ⃗𝑎 ⃗𝑣 ⃗𝑎) ⃗𝑏 = 𝑏𝑎 ⃗𝑣𝑎𝑏

This encodes the rotation in the plane formed by ⃗𝑎, ⃗𝑏 by 2∠ ⃗𝑎 ⃗𝑏. The
product 𝑎𝑏 is called a rotor.
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Physical Applications



Physical Applications

Physics Made Intuitive
In 2D, a bivector is a pseudoscalar. Likewise, trivectors are 3D
pseudoscalars. This is because the basis of bivectors in 2D has one
element, and the basis of trivectors in 3D have one element.

For example, consider torque, 𝜏 = ⃗𝑟 × ⃗𝐹 :

⃗𝑟

⃗𝐹

For some reason, 𝜏  points out of the page. But consider 𝑖𝜏 :

𝑖𝜏

Which makes a lot more sense, in my opinion.
15



Physical Applications

Maxwell’s Equations
Recall Maxwell’s equations, which describe electromagnetism.

⃗𝐸 𝐵⃗

⋅ ∇⃗ ⋅ ⃗𝐸 = 𝜌
𝜀0

∇⃗ ⋅ 𝐵⃗ = 0

× ∇⃗ × ⃗𝐸 = −𝜕𝐵⃗
𝜕𝑡 ∇⃗ × 𝐵⃗ = 𝜇0( ⃗𝐽 + 𝜀0

𝜕𝐸⃗
𝜕𝑡 )

∇⃗ =
𝜕
𝜕𝑥

̂𝑥 +
𝜕
𝜕𝑦

̂𝑦 +
𝜕
𝜕𝑧

̂𝑧

However, with geometric algebra, this can be made a lot simpler.
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Physical Applications

Maxwell’s Equations
We can add scalars and vectors now, so let’s define a new gradient
and some new variables.

∇ =
1
𝑐

𝜕
𝜕𝑡

+ ∇⃗

=
1
𝑐

𝜕
𝜕𝑡

+
𝜕
𝜕𝑥

̂𝑥 +
𝜕
𝜕𝑦

̂𝑦 +
𝜕
𝜕𝑧

̂𝑧

𝐽 = 𝑐𝜌 − ⃗𝐽

𝐹 = ⃗𝐸 + 𝑖𝐵⃗

This gives us a new statement of Maxwell’s equations…
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∇𝐹 = 𝐽



Generalizing to
Higher Dimensions



Generalizing to

Higher Dimensions

What happens when we go above 3D?
What is the geometric product of two bivectors?

(Bivector)(Bivector) = Scalar + Bivector + 4-vector

This breaks our 𝑢⃗ ⃗𝑣 = 𝑢⃗ ⋅ ⃗𝑣 + 𝑢⃗ ∧ ⃗𝑣 rule! Turns out, most of the time
𝑢⃗ ⃗𝑣 ≠ 𝑢⃗ ⋅ ⃗𝑣 + 𝑢⃗ ∧ ⃗𝑣. In general:

(𝑟-vector)(𝑠-vector) =  (|𝑟 − 𝑠|)-vector
+(|𝑟 − 𝑠| + 2)-vector
+(|𝑟 − 𝑠| + 4)-vector

⋮
+(|𝑟 + 𝑠|)-vector

This gives us the general form for the geometric product, between
any vectors in any dimension.
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Let’s reflect…



Let’s reflect…

Let’s reflect…
• In geometric algebra, you think about oriented magnitudes
• A lot of physical phenomena are pseudoscalars
• I lied to you guys in the abstract

Let 𝑉  be a vector space with a symmetric bilinear form 𝐵 : 𝑉 ×
𝑉 → 𝕂, where 𝕂 is a field. Say ⊗ is the tensor product of 𝑢, 𝑣 ∈ 𝑉 ,
and consider the ideal 𝒥(𝑉 , 𝐵) generated by elements of the form
𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑣 − 2𝐵(𝑣, 𝑤)1. Then, consider 𝑇 (𝑉 ) ≔ ⨁𝑘∈ℤ 𝑇 𝑘(𝑉 ),
where 𝑇 𝑘(𝑉 ) = 𝑉 ⊗ 𝑉 … ⊗ 𝑉  is the 𝑘-fold tensor product. Natu-
rally, the Clifford (Geometric) algebra of 𝑉  is the quotient:

Cl(𝑉 , 𝐵) = 𝑇(𝑉 )/𝒥(𝑉 , 𝐵)

Note that this is similar to the exterior algebra, which is
𝑇 (𝑉 )/ℐ(𝑉 , 𝐵), where ℐ(𝑉 , 𝐵) is the ideal generated by elements of
the form 𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑣.
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Thanks to the…

for funding my broke a**.
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